Appendix C Data Validation Reports

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Tait Environmental Management, Inc.

October 30, 2007

701 N. Park Center Drive Santa Ana, CA 92705 ATTN: Ms. Clara Boeru

SUBJECT: Boeing Realty Corp. Bldg C-6 Facility, Data Validation

Dear Ms. Boeru,

Enclosed is the final validation report for the fraction listed below. This SDG was received on October 15, 2007. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 17621:

SDG # Fraction

IQI1271 Volatiles

The data validation was performed under Tier 1 and Tier 3 guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998

Please feel free to contact us if you have any questions.

Sincerely,

Stella S. Cuenco

Project Manager/Senior Chemist

Boeing Realty Corp., Bldg C-6 Facility Data Validation Reports LDC# 17621

Volatiles

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp. Bldg. C-6 Facility

Collection Date:

September 14, 2007

LDC Report Date:

October 29, 2007

Matrix:

Water

Parameters:

Volatiles

Validation Level:

Tier 1 & 2

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): IQI1271

Sample Identification

WCC_03S_WG091407_0001** MWB007_WG091407_0001 EWC001_WG091407_0001

^{**}Indicates sample underwent Tier 2 review

Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent a Tier Level 2 review. Raw data were not evaluated for the samples reviewed by Tier 1 or 2 criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

Instrument performance data were not reviewed for Tier 1.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

In the case where %RSD was greater than 15.0%, the laboratory used a calibration curve to evaluate the compound. All coefficients of determination (r²) were greater than or equal to 0.990

For the purposes of technical evaluation, all compounds were evaluated against the 30.0% (%RSD) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

Average relative response factors (RRF) for all volatile target compounds and system performance check compounds (SPCCs) were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
9/18/07	2-Butanone	0.045 (≥0.05)	WCC_03S_WG091407_0001** 7l24003-BLK	J (all detects) UJ (all non-detects)	А

Initial calibration data were not reviewed for Tier 1.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 25.0% (%D) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

All of the continuing calibration RRF values were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
9/24/07	2-Butanone	0.046 (≥0.05)	WCC_03S_WG091407_0001** 7l24003-BLK	J (all detects) UJ (all non-detects)	Α

Continuing calibration data were not reviewed for Tier 1.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were not within QC limits. Since there were no associated samples, no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
7l24003-BS1	Acetone 2-Butanone 2-Hexanone Vinyl chloride	145 (30-140) 143 (40-140) 147 (45-140) 142 (55-135)	WCC_03S_WG091407_0001** MWB007_WG091407_0001 7l24003-BLK	J (all detects) J (all detects) J (all detects) J (all detects)	Р

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

Internal standards data were not reviewed for Tier 1.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp. Bldg. C-6 Facility Volatiles - Data Qualification Summary - SDG IQI1271

SDG	Sample	Compound	Flag	A or P	Reason
IQI1.271	WCC_03S_WG091407_0001**	2-Butanone	J (all detects) UJ (all non-detects)	A	Initial calibration (RRF)
IQI1271	WCC_03S_WG091407_0001**	2-Butanone	J (all detects) UJ (all non-detects)	А	Continuing calibration (RRF)
IQI1271	WCC_03S_WG091407_0001** MWB007_WG091407_0001	Acetone 2-Butanone 2-Hexanone Vinyl chloride	J (all detects) J (all detects) J (all detects) J (all detects)	Р	Laboratory control samples (%R)

Boeing Realty Corp. Bldg. C-6 Facility Volatiles - Laboratory Blank Data Qualification Summary - SDG IQI1271

No Sample Data Qualified in this SDG

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

TAIT Environmental/Boeing

Project ID: Boeing C-6 Torrance

C-6 Semi-Annual and Quarterly GWM Event

Sampled: 09/14/07

701 N. Parkcenter Drive Santa Ana, CA 92705

Report Number: 1Q11271

Received: 09/14/07

Attention: Clara Boeru

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Oualifiers
Sample ID: IQI1271-01 (WCC_03S_W	C091407 0001 - W	ater)							
Reporting Units: ug/l	3053407_0001 - 111	acci j							
1,1-Dichloroethene	EPA 8260B	7119014	42	100	7800	100	09/19/07	09/19/07	
Toluene	EPA 8260B	7119014	36	100	17000	100	09/19/07	09/19/07	
Surrogate: 4-Bromofluorobenzene (80-12	20%)				97 %			0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Surrogate: Dibromofluoromethane (80-1.	20%)				107 %				
Surrogate: Toluene-d8 (80-120%)	·				102 %				
Sample ID: IQI1271-01RE1 (WCC_03S	_WG091407_0001	- Water)							
Reporting Units: ug/l									
Acetone	EPA 8260B	7124003	180	400	ND	40	09/24/07	09/24/07	L
Benzene	EPA 8260B	7124003	11	40	170	40	09/24/07	09/24/07	
Bromobenzene	EPA 8260B	7124003	11	40	ND	40	09/24/07	09/24/07	
Bromochloromethane	EPA 8260B	7124003	13	40	ND	40	09/24/07	09/24/07	
Bromodichloromethane	EPA 8260B	7124003	12	40	ND	40	09/24/07	09/24/07	
Bromoform	EPA 8260B	7124003	16	40	ND	40	09/24/07	09/24/07	
Bromomethane	EPA 8260B	7124003	17	40	ND	40	09/24/07	09/24/07	
2-Butanone (MEK)	EPA 8260B	7124003	190	200	ND U	J 40	09/24/07	09/24/07	L
n-Butylbenzene	EPA 8260B	7124003	15	40	ND	40	09/24/07	09/24/07	
sec-Butylbenzene	EPA 8260B	7124003	10	40	ND	40	09/24/07	09/24/07	
tert-Butylbenzene	EPA 8260B	7124003	8.8	40	ND	40	09/24/07	09/24/07	
Carbon Disulfide	EPA 8260B	7124003	19	40	ND	40	09/24/07	09/24/07	
Carbon tetrachloride	EPA 8260B	7124003	-11	20	ND	40	09/24/07	09/24/07	
Chlorobenzene	EPA 8260B	7124003	14	40	ND	40	09/24/07	09/24/07	
Chloroethane	EPA 8260B	7124003	16	80	ND	40	09/24/07	09/24/07	
Chloroform	EPA 8260B	7124003	13	40	34	40	09/24/07	09/24/07	J
Chloromethane	EPA 8260B	7124003	16	80	ND	40	09/24/07	09/24/07	
2-Chlorotoluene	EPA 8260B	7124003	11	40	ND	40	09/24/07	09/24/07	
4-Chlorotoluene	EPA 8260B	7124003	12	40	ND	40	09/24/07	09/24/07	
1,2-Dibromo-3-chloropropane	EPA 8260B	7124003	39	80	ND	40	09/24/07	09/24/07	
Dibromochloromethane	EPA 8260B	7124003	11	40	ND	40	09/24/07	09/24/07	
1,2-Dibromoethane (EDB)	EPA 8260B	7124003	16	40	ND	40	09/24/07	09/24/07	
1,4-Dichlorobenzene	EPA 8260B	7124003	15	40	ND	. 40	09/24/07	09/24/07	
1,2-Dichlorobenzene	EPA 8260B	7124003	13	40	ND	40	09/24/07	09/24/07	
1,3-Dichlorobenzene	EPA 8260B	7124003	14	40	ND	40	09/24/07	09/24/07	
Dichlorodifluoromethane	EPA 8260B	7124003	10	40	ND	40	09/24/07	09/24/07	
1,2-Dichloroethane	EPA 8260B	7I24003	1]	20	28	40	09/24/07	09/24/07	
1,1-Dichloroethane	EPA 8260B	7124003	11	40	300	40	09/24/07	09/24/07	
cis-1,2-Dichloroethene	EPA 8260B	7124003	13	40	2400	. 40	09/24/07	09/24/07	
trans-1,2-Dichloroethene	EPA 8260B	7124003	11	40	300	40	09/24/07	09/24/07	
1,2-Dichloropropane	EPA 8260B	7124003	14	40	ND	40	09/24/07	09/24/07	
2,2-Dichloropropane	EPA 8260B	7124003	14	40	ND	40	09/24/07	09/24/07	
cis-1,3-Dichloropropene	EPA 8260B	7124003	8.8	20	ND	40	09/24/07	09/24/07	

TestAmerica - Irvine, CA

Nicholas Marz Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

11/02907

IQI1271 <Page 2 of 60>

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Project ID: Boeing C-6 Torrance

701 N. Parkcenter Drive

C-6 Semi-Annual and Quarterly GWM Event

Sampled: 09/14/07

Santa Ana, CA 92705 Attention: Clara Boeru Report Number: 1Q11271

Received: 09/14/07

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IQI1271-01REI (WCC_03S	WG091407_0001	- Water) - co	nt.						
Reporting Units: ug/l									
1,1-Dichloropropene	EPA 8260B	7124003	11	40	ND	40	09/24/07	09/24/07	
trans-1,3-Dichloropropene	EPA 8260B	7124003	13	20	ND	40	09/24/07	09/24/07	
Ethylbenzene	EPA 8260B	7124003	10	40	19	40	09/24/07	09/24/07	.J
Hexachlorobutadiene	EPA 8260B	7124003	15	40	ND	40	09/24/07	09/24/07	
2-Hexanone	EPA 8260B	7124003	100	240	ND	40	09/24/07	09/24/07	L
lodomethane	EPA 8260B	7124003	40	80	ND	40	09/24/07	09/24/07	
Isopropylbenzene	EPA 8260B	7124003	10	40	ND	40	09/24/07	09/24/07	
p-Isopropyltoluene	EPA 8260B	7124003	11	40	ND	40	09/24/07	09/24/07	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	7124003	13	40	ND	40	09/24/07	09/24/07	
Methylene chloride	EPA 8260B	7124003	38	40	ND	40	09/24/07	09/24/07	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	7124003	140	200	ND	40	09/24/07	09/24/07	
n-Propylbenzene	EPA 8260B	7124003	11	40	ND	40	09/24/07	09/24/07	
Styrene	EPA 8260B	7124003	6.4	40	ND	40	09/24/07	09/24/07	
1,1,1,2-Tetrachloroethane	EPA 8260B	7124003	11	40	ND	40	09/24/07	09/24/07	
1,1,2,2-Tetrachloroethane	EPA 8260B	7124003	9.6	40	ND	40	09/24/07	09/24/07	
Tetrachloroethene	EPA 8260B	7124003	13	40	ND	40	09/24/07	09/24/07	
Tetrahydrofuran (THF)	EPA 8260B	7124003	140	400	ND	40	09/24/07	09/24/07	
1,2,3-Trichlorobenzene	EPA 8260B	7124003	12	40	ND	40	09/24/07	09/24/07	
1,2,4-Trichlorobenzene	EPA 8260B	7124003	19	40	ND	40	09/24/07	09/24/07	
1,1,2-Trichloroethane	EPA 8260B	7124003	12	40	ND	40	09/24/07	09/24/07	
1,1,1-Trichloroethane	EPA 8260B	· 7I24003	12	40	40	40	09/24/07	09/24/07	
Trichloroethene	EPA 8260B	7124003	10	40	520	40	09/24/07	09/24/07	
Trichlorofluoromethane	EPA 8260B	7124003	14	80	ND	40	09/24/07	09/24/07	
1,2,3-Trichloropropane	EPA 8260B	7124003	16	40	ND	40	09/24/07	09/24/07	
1,2,4-Trimethylbenzene	EPA 8260B	7124003	9.2	40	ND	40	09/24/07	09/24/07	
1,3,5-Trimethylbenzene	EPA 8260B	7124003	10	40	ND	40	09/24/07	09/24/07	
Vinyl acetate	EPA 8260B	7124003	. 40	240 -	ND	40	09/24/07	09/24/07	
Vinyl chloride	EPA 8260B	7124003	12	20	2500	3 40	09/24/07	09/24/07	L
Xylenes, Total	EPA 8260B	7124003	36	40	130	40	09/24/07	09/24/07	
Surrogate: 4-Bromofluorobenzene (80-120	1%)				98.%				
Surrogate: Dibromofluoromethane (80-12	0%)				104 %				
Surrogate: Toluene-d8 (80-120%)					104 %				

TestAmerica - Irvine, CA

Nicholas Marz Project Manager

1 102901

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQ11271 <Page 3 of 60>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

TAIT Environmental/Boeing

Project ID: Boeing C-6 Torrance

701 N. Parkcenter Drive

C-6 Semi-Annual and Quarterly GWM Event

Sampled: 09/14/07

Santa Ana, CA 92705

Report Number: IQI1271

Attention: Clara Boeru

Received: 09/14/07

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1QI1271-04 (MWB007_W	/G091407 0001 - Wa	ter)							
Reporting Units: ug/l		,							
1,1-Dichloroethene	EPA 8260B	7119014	4.2	10	1000	10	09/19/07	09/19/07	
Trichloroethene	EPA 8260B	7119014	2.6	10	1200	10	09/19/07	09/19/07	
Surrogate: 4-Bromofluorobenzene (80-	120%)				98 %				
Surrogate: Dibromofluoromethane (80-	-120%)	-			109 %				
Surrogate: Toluene-d8 (80-120%)	•			•	102 %				
Sample ID: IQI1271-04RE1 (MWB00	7_WG091407_0001 -	Water)							
Reporting Units: ug/l		•							
Acetone	EPA 8260B	7124003	18	40	ND	4	09/24/07	09/24/07	L
Benzene	EPA 8260B	7124003	1.1	4.0	ND	4	09/24/07	09/24/07	
Bromobenzene	EPA 8260B	7124003	1.1	4.0	ND	4	09/24/07	09/24/07	
Bromochloromethane	EPA 8260B	7124003	1.3	4.0	ND	4	09/24/07	09/24/07	
Bromodichloromethane	EPA 8260B	7124003	1.2	4.0	ND	4	09/24/07	09/24/07	
Bromoform	EPA 8260B	7124003	1.6	4.0	ND	4	09/24/07	09/24/07	
Bromomethane	EPA 8260B	7124003	1.7	4.0	ND	4	09/24/07	09/24/07	
2-Butanone (MEK)	EPA 8260B	7124003	19	20	ND	4	09/24/07	09/24/07	L
n-Butylbenzene	EPA 8260B	7124003	1.5	4.0	ND	4	09/24/07	09/24/07	
sec-Butylbenzene	EPA 8260B	7124003	1.0	4.0	ND	4	09/24/07	09/24/07	
tert-Butylbenzene	EPA 8260B	7124003	0.88	4.0	ND	4	09/24/07	09/24/07	
Carbon Disulfide	EPA 8260B	7124003	1.9	4.0	ND	4	09/24/07	09/24/07	
Carbon tetrachloride	. EPA 8260B	7124003	1.1	2.0	ND	4	09/24/07 ·	09/24/07	
Chlorobenzene	EPA 8260B	7124003	1.4	4.0	ND	4	09/24/07	09/24/07	
Chloroethane	EPA 8260B	7124003	1.6	8.0	ND	4	09/24/07	09/24/07	-
Chloroform	EPA 8260B	7124003	1.3	4.0	3.1	4	09/24/07	09/24/07	1
Chloromethane	EPA 8260B	7124003	1.6	8.0	ND	4	09/24/07	09/24/07	
2-Chlorotoluene	EPA 8260B	7124003	1.1	4.0	ND	4	09/24/07	09/24/07	
4-Chlorotoluene	EPA 8260B	7124003	1.2	4.0	ND	4	09/24/07	09/24/07	
1,2-Dibromo-3-chloropropane	EPA 8260B	7124003	.3.9	8.0	ND	4	09/24/07	09/24/07	
Dibromochloromethane	EPA 8260B	7124003	1.1	4.0	ND	4	09/24/07	09/24/07	•
1,2-Dibromoethane (EDB)	EPA 8260B	7124003	1.6	4.0	ND	4	09/24/07	09/24/07	
1,4-Dichlorobenzene	EPA 8260B	7124003	1.5	4.0	ND	4	09/24/07	09/24/07	
1,2-Dichlorobenzene	EPA 8260B	7124003	I.3	4.0	ND	4	09/24/07	09/24/07	
1,3-Dichlorobenzene	EPA 8260B	7124003	1.4	4.0	.ND	4	09/24/07	09/24/07	
Dichlorodifluoromethane	EPA 8260B	7124003	1.0	4.0	ND	4	09/24/07	09/24/07	
1,2-Dichloroethane	EPA 8260B	7124003	1.1	2.0	ND	4	09/24/07	09/24/07	
1,1-Dichloroethane	EPA 8260B	7124003	1.1	4.0	. 13	4	09/24/07	09/24/07	
cis-1,2-Dichloroethene	EPA 8260B	7124003	1.3	4.0	16	4	09/24/07	09/24/07	
trans-1,2-Dichloroethene	EPA 8260B	7124003	1.1	4.0	8.8	4	09/24/07	09/24/07	
1,2-Dichloropropane	EPA 8260B	7124003	1.4	4.0	ND	4	09/24/07	09/24/07	
2,2-Dichloropropane	EPA 8260B	7124003	1.4	4.0	ND	4	09/24/07	09/24/07	
cīs-1,3-Dichloropropene	EPA 8260B	7124003	0.88	2.0	ND	4	09/24/07	09/24/07	
• ,									

TestAmerica - Irvine, CA

Nicholas Marz Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQI1271 <Page 8 of 60>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Project ID: Boeing C-6 Torrance

C-6 Semi-Annual and Quarterly GWM Event

Sampled: 09/14/07

701 N. Parkcenter Drive Santa Ana, CA 92705 Attention: Clara Boeru

Report Number: IQI1271 Received: 09/14/07

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

			MDL	Reporting	Sample		Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IQI1271-04RE1 (MWB007_V	VG091407_0001 -	Water) - coi	ıt.						
Reporting Units: ug/l									
1,1-Dichloropropene	EPA 8260B	7I24003	1.1	4.0	ND	4	09/24/07	09/24/07	
trans-1,3-Dichloropropene	EPA 8260B	7124003	1.3	2.0	ND	4	09/24/07	09/24/07	
Ethylbenzene	EPA 8260B	7124003	1.0	4.0	ND	4	09/24/07	09/24/07	
Hexachlorobutadiene	EPA 8260B	7124003	1.5	4.0	ND	4	09/24/07	09/24/07	
2-Hexanone	EPA 8260B	7124003	10	24	ND	.4	09/24/07	09/24/07	L
Iodomethane	EPA 8260B	7124003	4.0	8.0	ND	4	09/24/07	09/24/07	
Isopropylbenzene	EPA 8260B	7124003	1.0	4.0	ND	4	09/24/07	09/24/07	
p-lsopropyltoluene	EPA 8260B	7124003	1.1	4.0	ND	4	09/24/07	09/24/07	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	7124003	1.3	4.0	ND	4	09/24/07	09/24/07	
Methylene chloride	EPA 8260B	7124003	3.8	4.0	ND	4	09/24/07	09/24/07	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	7124003	14	20	ND	4 ·	09/24/07	09/24/07	
n-Propylbenzene	EPA 8260B	7124003	1. I	4.0	ND	4	09/24/07	09/24/07	
Styrene	EPA 8260B	7124003	0.64	4.0	ND	4	09/24/07	09/24/07	
1,1,1,2-Tetrachloroethane	EPA 8260B	7124003	1.1	4.0	ND	4	09/24/07	09/24/07	
1,1,2,2-Tetrachloroethane	EPA 8260B	7124003	0.96	4.0	ND	.4	09/24/07	09/24/07	
Tetrachloroethene	EPA 8260B	7124003	1.3	4.0	ND	4	09/24/07	09/24/07	
Tetrahydrofuran (THF)	EPA 8260B	7124003	14	40	ND	4	09/24/07	09/24/07	
Toluene	EPA 8260B	7124003	1.4	4.0	ND	4	09/24/07	09/24/07	
1,2,3-Trichlorobenzene	EPA 8260B	7Í24003	1.2	4.0	ND	4	09/24/07	09/24/07	
1,2,4-Trichlorobenzene	EPA 8260B	7124003	1.9	4.0	ND	4	09/24/07	09/24/07	
1,1,2-Trichloroethane	EPA 8260B	7124003	1.2	4.0	ND	4	09/24/07	09/24/07	
1,1,1-Trichloroethane	EPA 8260B	7124003	1.2	4.0	1.4	4	09/24/07	09/24/07	J
Trichlorofluoromethane	EPA 8260B	7I240 03	1.4	8.0	ND	4	09/24/07	09/24/07	
1,2,3-Trichloropropane	EPA 8260B	7124003	1.6	4.0	ND	4	09/24/07	09/24/07	
1,2,4-Trimethylbenzene	EPA 8260B	7124003	0.92	4.0	ND	4	09/24/07	09/24/07	
1,3,5-Trimethylbenzene	EPA 8260B	.7124003	1.0	4.0	ND	· 4	09/24/07	09/24/07	
Vinyl acetate	EPA 8260B	7124003	4.0	24	ND	4	09/24/07	09/24/07	
Vinyl chloride	EPA 8260B	7124003	1.2	2.0	ND	4	09/24/07	09/24/07	L
Xylenes, Total	EPA 8260B	7I24 0 03	3.6	4.0	ND	4	09/24/07	09/24/07	
Surrogate: 4-Bromofluorobenzene (80-120)	%)				98%				
Surrogate: Dibromofluoromethane (80-120	9%)				104%				
Surrogate: Toluene-d8 (80-120%)				-	105 %				

TestAmerica - Irvine, CA

Nicholas Marz Project Manager

1/02901

IOI1271 Page 9 of 6

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

TAIT Environmental/Boeing

Project ID: Boeing C-6 Torrance

701 N. Parkcenter Drive

C-6 Semi-Annual and Quarterly GWM Event

Santa Ana, CA 92705 Attention: Clara Boeru Report Number: IQI1271

Sampled: 09/14/07

Received: 09/14/07

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1Q11271-05 (EWC001_WG0	91407_9001 - Wat	er)							
Reporting Units: ug/l	-	•							
Acetone	EPA 8260B	7119014	220	500	480	50	09/19/07	09/19/07	J
Benzene	EPA 8260B	7119014	14	50	98	50	09/19/07	09/19/07	
Bromobenzene	EPA 8260B	7119014	14	50	ND	50	09/19/07	09/19/07	
Bromochloromethane	EPA 8260B	7119014	16	50	ND	50	09/19/07	09/19/07	
Bromodichloromethane	EPA 8260B	7119014	15	50	ND	50	09/19/07	09/19/07	
Bromoform	EPA 8260B	7119014	20	50	ND	50	09/19/07	09/19/07	
Bromomethane	EPA 8260B	7]19014	21	50	ND	50	09/19/07	09/19/07	
2-Butanone (MEK)	EPA 8260B	7119014	240	250	6200	-50	09/19/07	09/19/07	
n-Butylbenzene	EPA 8260B	7119014	18	50	ND	50	09/19/07	09/19/07	
sec-Butylbenzene	EPA 8260B	7[19014	' 12	50	ND	50	09/19/07	09/19/07	
tert-Butylbenzene	EPA 8260B	7[190]4	11	50	ND	50	09/19/07	09/19/07	
Carbon Disulfide	EPA 8260B	7119014	24	50	ND	50	09/19/07	09/19/07	
Carbon tetrachloride	EPA 8260B	7] 1901 4	14	25	ND	50	09/19/07	09/19/07	
Chlorobenzene	EPA 8260B	7119014	18	50	ND	50	09/19/07	09/19/07	
Chloroethane	EPA 8260B	7119014	20	100	ND	50	09/19/07	09/19/07	
Chloroform	EPA 8260B	7119014	16	50	38	50	09/19/07	09/19/07	J
Chloromethane	EPA 8260B	7119014	20	100	ND	50	09/19/07	09/19/07	
2-Chlorotoluene	EPA 8260B	7119014	14	50	ND	50	09/19/07	09/19/07	
4-Chlorotoluene	EPA 8260B	7119014	14	50	ND	50	09/19/07	09/19/07	
1,2-Dibromo-3-chloropropane	EPA 8260B	7119014	48	100	ND	50	09/19/07	09/19/07	
Dibromochloromethane	EPA 8260B	7119014	14	50	ND	50	09/19/07	09/19/07	
1,2-Dibromoethane (EDB)	EPA 8260B	7119014	20	50	ND	50	09/19/07	09/19/07	
1,4-Dichlorobenzene	EPA 8260B	7119014	18	50	ND	50	09/19/07	09/19/07	
1,2-Dichlorobenzene	EPA 8260B	7119014	16	50	ND	50	09/19/07	09/19/07	
1,3-Dichlorobenzene	EPA 8260B	7119014	18	50	ND	50	09/19/07	09/19/07	
Dichlorodifluoromethane	EPA 8260B	7119014	13	50	ND	50	09/19/07	09/19/07	
1,2-Dichloroethane	EPA 8260B	7119014	14	25	88	50	09/19/07	09/19/07	
1,1-Dichloroethane	EPA 8260B	7119014	14	50	260	50	09/19/07	09/19/07	•
1,1-Dichloroethene	EPA 8260B	7119014	21	50	13000	50	09/19/07	09/19/07	
cis-1,2-Dichloroethene	EPA 8260B	7119014	16	50	4100	50	09/19/07	09/19/07	•
trans-1,2-Dichloroethene	EPA 8260B	7119014	14	50	240	50	09/19/07	09/19/07	
1,2-Dichloropropane	EPA 8260B	7119014	18	50	ND	- 50	09/19/07	09/19/07	
2,2-Dichloropropane	EPA 8260B	7119014	17	50	ND	50	09/19/07	09/19/07	-
cis-1,3-Dichloropropene	EPA 8260B	7119014	11	25	ND	50	09/19/07	09/19/07	
1,1-Dichloropropene	EPA 8260B	7119014	14	50	ND	50	09/19/07	09/19/07	•
trans-1,3-Dichloropropene	EPA 8260B	7119014	16	25	ND	50	09/19/07	09/19/07	
Ethylbenzene	EPA 8260B	7119014	12	50	48	50	09/19/07	09/19/07	J
Hexachlorobutadiene	EPA 8260B	7119014	19	:50	ND	50	09/19/07	09/19/07	
2-Hexanone	EPA 8260B	7119014	130	300	ND	50	09/19/07	09/19/07	
lodomethane	EPA 8260B	7119014	50	100	ND	50	09/19/07	09/19/07	
lsopropylbenzene	EPA 8260B	7119014	12	50	ND	50	09/19/07	09/19/07	
TestAmerica - Irvine, CA									

TestAmerica - Irvine, CA

Nicholas Marz Project Manager

11/02907

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQI1271 <Page 10 of 60>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive

Santa Ana, CA 92705 Attention: Clara Boeru Project ID: Boeing C-6 Torrance

C-6 Semi-Annual and Quarterly GWM Event

Sampled: 09/14/07

Report Number: IQI1271

Received: 09/14/07

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers Sample ID: IQ11271-05 (EWC001_WG091407_0001 - Water) - cont. Reporting Units: ug/l
Reporting Units: ug/l
•
p-Isopropyltoluene EPA 8260B 7119014 14 50 ND 50 09/19/07 09/19/07
Methyl-tert-butyl Ether (MTBE) . EPA 8260B · 7119014 16 50 ND 50 09/19/07 09/19/07
Methylene chloride EPA 8260B 7119014 48 50 48 50 09/19/07 09/19/07 J
4-Methyl-2-pentanone (MIBK) EPA 8260B 7119014 180 250 12000 50 09/19/07 09/19/07
n-Propylbenzene EPA 8260B 7119014 14 50 ND 50 09/19/07 09/19/07
Styrene EPA 8260B 7119014 8.0 50 ND 50 09/19/07 09/19/07
1,1,1,2-Tetrachloroethane EPA 8260B 7119014 14 50 ND 50 09/19/07 09/19/07
1,1,2,2-Tetrachloroethane EPA 8260B 7119014 12 50 ND 50 09/19/07 09/19/07
Tetrachloroethene EPA 8260B 7119014 16 50 ND 50 09/19/07 09/19/07
Tetrahydrofuran (THF) EPA 8260B 7119014 180 500 ND 50 09/19/07 09/19/07
1,2,3-Trichlorobenzene EPA 8260B 7119014 15 50 ND 50 09/19/07 09/19/07
1,2,4-Trichlorobenzene EPA 8260B 7119014 24 50 ND 50 09/19/07 09/19/07
1,1,2-Trichloroethane EPA 8260B 7119014 15 .50 75 50 09/19/07 09/19/07
1,1,1-Trichloroethaue EPA 8260B 7119014 15 50 580 50 09/19/07 09/19/07
Trichloroethene EPA 8260B 7119014 13 50 2000 50 09/19/07 09/19/07
Trichlorofluoromethane EPA 8260B 7119014 17 100 ND 50 09/19/07 09/19/07
1,2,3-Tricbloropropane EPA 8260B 7119014 20 50 ND 50 09/19/07 09/19/07
1,2,4-Trimethylbenzene EPA 8260B 7I19014 12 50 ND 50 09/19/07 09/19/07
1,3,5-Trimethylbenzene EPA 8260B 7I19014 13 50 ND 50 09/19/07 09/19/07
Vinyl acetate EPA 8260B 7119014 50 300 ND 50 09/19/07 09/19/07
Vinyl chloride EPA 8260B 7119014 15 25 370 50 09/19/07 09/19/07
Xylenes, Total EPA 8260B 7119014 45 50 240 50 09/19/07 09/19/07
Surrogate: 4-Bromofluorobenzene (80-120%) 96 %
Surrogate: Dibromofluoromethane (80-120%) 111 %
Surrogate: Toluene-d8 (80-120%) 104 %

TestAmerica - Irvine, CA

Nicholas Marz Project Manager h 102907

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQI1271 <Page 11 of 60>

LDC #: 17621A1	VALIDATION COMPLETENESS WORKSHEET	Date:
SDG #: IQI1271	Tier 1/2/ 3	Page:_
Laboratory: Test America		Reviewer:
•		2nd Reviewer

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u>I.</u>	Technical holding times	4	Sampling dates:
11.	GC/MS Instrument performance check		Not reviewed for Tier I validation.
111.	Initial calibration	SW	Not reviewed for Tier I validation. % R=D , +>
IV.	Continuing calibration	SW	Not reviewed for Tier I validation.
V	Blanks		
VI.	Surrogate spikes	<u> </u>	
VII.	Matrix spike/Matrix spike duplicates	SW	none aseocia, no qual
VIII.	Laboratory control samples	SW	Ψς
IX.	Regional Quality Assurance and Quality Control	N	
Х.	Internal standards	Ā	
XI.	Target compound identification	XN	Not reviewed for Tier I & II validation.
XII.	Compound quantitation/CRQLs	* N	Not reviewed for Tier I & II validation.
XIII,	Tentatively identified compounds (TICs)	1	Not reviewed for Tier I & II validation. Not reported
XIV.	System performance	* N	Not reviewed for Tier I & II validation.
XV.	Overall assessment of data	4	
XVI.	Field duplicates	V	
XVII.	Field blanks	N	

Note: A = Acceptable

ND = No compounds detected R = Rinsate

D = Duplicate TB = Trip blank

N = Not provided/applicable SW = See worksheet

FB = Field blank

EB = Equipment blank

Validated Samples:* Indicates sample underwent Tier I validation **Indicates sample underwent Tier III validation*
Nation*

	Vacator						
12	1= H, CC WCC_03S_WG091407_0001***	11 1	7119014-DLK	21	•	31	
2	MWB007_WG091407_0001*	122	7124003-BLK	22		32	
3	EWC001_WG091407_0001 * 5			23		33	
4		14		24		34	
5		15		25		35	
6		16	<u> </u>	26		36	
7		17		27		37	
8		18		28		38	
9		19		29		39	
10		20		30		40	

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA SW 846 Method 8260B)

A. Chloromethane*	S. Trichloroethene	KK. Trichlorofluoromethane			
B. Bromomethane	T. Dibromochloromethane	Mathyl-test-histogram	COC. tert-butylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	
C. Vinyl choride**			DOD: 1,2,4-Trimethylbenzene	VVV. 4-Ethyltoluene	
	U. 1,1,2-1 nchloroethane	MM. 1,2-Dibromo-3-chloropropane	EEE. sec-Butylbenzene	WWW. Ethanol	_
D. Chloroethane	V. Benzene	NN. Methyl ethyl ketone	FFF 4 3-Dichloroheansons		_
E. Methylene chloride	W. trans-1,3-Dichloropropene	OO. 2.2-Dichlommoans	Albano outro	XXX. Ul-tsopropyl ether	
F. Acetone	X. Bronoform*		GGG, p-isopropyroluene	YYY, tert-Butanol	
G Carbon designate		PP, bromochloromethane	HHH. 1,4-Dichlorobenzene	ZZZ. tert-Butyl alcohol	
	Y. 4-Methyl-2-pentanone	QQ. 1,1-Dichloropropene	III. n-Butylbenzene	AAAA Ethul tert.hind ether	
H. 1,1-Dichloroethene**	Z. 2-Hexanone	RR. Dibromonethane	11. 4.2.0000000000000000000000000000000000	יייין אוייין	
l. 1,1-Dichloroethane*	AA. Tetrachlocoathene		occ. 1,4- Lich lice Obertzene	BBBB. tert-Amyl methyl ether	_
		SS. 1,3-Dichloropropane	KKK. 1,2,4-Trichlorobenzene	CCCC.1-Chlorohexane	
J. 1,2-Dichloroethene, total	BB. 1,1,2,2-Tetrachioroethane*	TT. 1,2-Dibromoethane	Toxachiorophanica		
K. Chloroform**	CC. Toluene**			UUUU. Isopropyi alcohol	
2. D. O. C.		U. I, I, K. 18Kachloroethane	MMM. Naphthalene	EEEE. Acetonitrile	
r ', z - Dichioreinane	DD. Chlorobenzene*	VV. Isopropyibenzene	NNN, 1.2.3-Trichiombenzage		
M. 2-Butanone	EE. Ethylbenzene**	WW. Bromobenzene	OOO 10 FEBRUARY		
N. 1,1,1-Trichloroethane	FF. Styrene	1 1		GGGG. Acryonitrile	
		AX. 1,2,3-1 richloropropane	PPP, trans-1,2-Dichtoroethene	HHHH. 1,4-Dloxane	_
O. Carbon tetrachioride	GG. Xylenes, total	YY, n-Propylbenzene	QQQ, cls-12-Dichlomethene		_
P. Bromodichloromethane	HH. VInvi acetate	77 2 Chlosofthises		ini: isodutyi alconol	_
0 1 2 Dich Concession		ZZ: ZZ:IIOIOIOIII	RRR. m,p-Xylenes	JJJJ. Methacrylonitrile	
	II. Z-Chloroethylvinyl ether	AAA. 1,3,5-Trimethylbenzene	SSS. o-Xylene	KKKK. Propingitalia	
R. cis-1,3-Dichloropropene	JJ. Dichlorodifluoromethane	BBB. 4-Chlorotoluene	TTT. 1.1.2-Trichlorn-1 2 2-triff: consultance		

* = System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

VALIDATION FINDINGS WORKSHEET

Initial Calibration

2nd Reviewer: Page: Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

SDG #: 12/1271

LDC #: 17621 1

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Did the laboratory perform a 5 point calibration prior to sample analysis?

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation?

Did the initial calibration meet the acceptance criteria? Y)N N/A Y(N)N/A

Were all %RSDs and RRFs within the validation criteria of ≤30 %RSD and ≥0.05 RRF ?

1		_		 T	 	-	-		 	_	 	 	 	 _	 _	 	_
Qualifications	J/17/4								and the second s								
Associated Samples	7,3 teles	计	1 7124003-AL														
Finding RRF (Limit: >0.05)	0.045																
Finding %RSD (Limit: ≤30.0%)																	
Compound	V																
Standard ID	1 <u>4</u> 1																
Date	L0/31/b																
*					_][$oxed{J}$									

VALIDATION FINDINGS WORKSHEET

Page: Reviewer: 2nd Reviewer:

SDG #: [8] >71 LDC #: 176214

Continuing Calibration

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". X N N/A

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ? Were all %D and RRFs within the validation criteria of <25 %D and <a>≥0.05 RRF ?

Qualifications	3/47/A														1.0		
Associated Samples	1,7224003-24K				·							-					
Finding RRF (Limit: ≥0.05)	770'0				•												
Finding %D (Limit: ≤25.0%)																	
Compound	M			·													
· Standard ID	VSTDOZE		7														
Date	16/45/67																
*									П								

SDG #: 181 21 LDC #: [76214]

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

_ of / Page:

Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A",

Y N/A

Was a LCS required? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

			Γ-	Γ	Γ		T					Г			Γ		l	<u> </u>			l -		l	
Qualifications	Jaca/P			→																				
Associated Samples	12,7124003-81K																							
RPD (Limits)	()	()	()	()	()	()	()	()	()	()	()	· ·)	()	()	()	()	()	()	()	(()	()	()
LCSD %R (Limits)	(.)	()	()	(()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()
LCS %R (Limits)	[45 (20-14p)	(中十四) 5月	(如一新)411	142 (58-135)	()	()	()	()	()	()	()	()	()	()	· ()	()	()	()	()	()	()	()	()	()
Compound	1	N	N	J																		,		
TCS/TCSD ID	158 800 ZI	-																	-					
# Date																								

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Tait Environmental Management, Inc.

October 30, 2007

701 N. Park Center Drive Santa Ana, CA 92705 ATTN: Ms. Clara Boeru

SUBJECT: Boeing Realty Corp. Bldg C-6 Facility, Data Validation

Dear Ms. Boeru,

Enclosed is the final validation report for the fraction listed below. This SDG was received on October 16, 2007. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 17624:

SDG # Fraction
IQI1657 Volatiles

The data validation was performed under Tier 2 guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998

Please feel free to contact us if you have any questions.

Sincerely,

Stella S. Cuenco

Project Manager/Senior Chemist

Shaded cells indicate Tier III validation (all other cells are Tier II validation). Sample counts do not include MS, MSD, or DUP's.

Boeing Realty Corp., Bldg C-6 Facility Data Validation Reports LDC# 17624

Volatiles

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp., Bldg. C-6 Facility

Collection Date:

September 19, 2007

LDC Report Date:

October 29, 2007

Matrix:

Water

Parameters:

Volatiles

Validation Level:

Tier 2

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): IQI1657

Sample Identification

MWB019_WG091907_0001

Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

In the case where %RSD was greater than 15.0%, the laboratory used a calibration curve to evaluate the compound. All coefficients of determination (r²) were greater than or equal to 0.990

For the purposes of technical evaluation, all compounds were evaluated against the 30.0% (%RSD) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

Average relative response factors (RRF) for all volatile target compounds and system performance check compounds (SPCCs) were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
9/18/07	2-Butanone	0.045 (≥0.05)	All samples in SDG IQI1657	J (all detects) UJ (all non-detects)	А

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 25.0% (%D) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
9/25/07	Acetone 2-Butanone 2-Hexanone	51.4 48.9 50.9	All samples in SDG IQI1657	J (all detects) UJ (all non-detects)	А

All of the continuing calibration RRF values were within method and validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were not within QC limits. Since there were no associated samples, no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp., Bldg. C-6 Facility Volatiles - Data Qualification Summary - SDG IQI1657

SDG	Sample	Compound	Flag	A or P	Reason
IQI1657	MWB019_WG091907_0001	2-Butanone	J (all detects) UJ (all non-detects)	А	Initial calibration (RRF)
IQI1657	MWB019_WG091907_0001	Acetone 2-Butanone 2-Hexanone	J (all detects) UJ (all non-detects)	A	Continuing calibration (%D)

Boeing Realty Corp., Bldg. C-6 Facility Volatiles - Laboratory Blank Data Qualification Summary - SDG IQI1657

No Sample Data Qualified in this SDG

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive

Santa Ana, CA 92705 Attention: Clara Boeru Project ID: Boeing C-6 Torrance

C-6 Semi Annual and Quarterly GWM Event

Report Number: 1QI1657

Sampled: 09/19/07

Received: 09/19/07

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQ11657-02 (MWB019_WG0) Reporting Units: ug/l	91907_0001 - Wa	ter)							
Chloroform	EPA 8260B	7124021	16	50	2000	50	09/24/07	09/24/07	
Surrogate: 4-Bromofluorobenzene (80-120		7124021	10	30	98 %	30	09/24/07	09/24/07	
Surrogate: Dibromoftuoromethane (80-120	•				106 %				
Surrogate: Toluene-d8 (80-120%)	,,,,,				100 %				
					104 70				
Sample ID: IQI1657-02RE1 (MWB019_V	VG091907_0001 -	Water)							
Reporting Units: ug/l					ı,	_			
Acetone	EPA 8260B	7125011	45	100	NDUJ		09/25/07	09/25/07	С
Benzene	EPA 8260B	7125011	2.8	10	ND	10	09/25/07	09/25/07	
Bromobenzene	EPA 8260B	7125011	2.7	10	ND	10	09/25/07	09/25/07	
Bromochloromethane	EPA 8260B	7125011	3.2	10	ND	10	09/25/07	09/25/07	
Bromodichloromethane	EPA 8260B	7125011	3.0	10	ND	10	09/25/07	09/25/07	
Bromoform	EPA 8260B	7125011	4.0	10	ND	10	09/25/07	09/25/07	
Bromomethane	EPA 8260B	7I25011	4.2	10	ND	10	09/25/07	09/25/07	•
2-Butanone (MEK)	EPA 8260B	7125011	47	50	ND UJ		09/25/07	09/25/07	С
n-Butylbenzene	EPA 8260B	7125011	3.7	10	ND	10	09/25/07	09/25/07	
sec-Butylbenzene	EPA 8260B	7125011	2.5	10	ND	10	09/25/07	09/25/07	
tert-Butylbenzene	EPA 8260B	7125011	2.2	10	ND	10	09/25/07	09/25/07	
Carbon Disulfide	EPA 8260B	7125011	4.8	10	ND	10	09/25/07	09/25/07	
Carbon tetrachloride	EPA 8260B	7125011	2.8	5.0	13	10	09/25/07	09/25/07	
Chlorobenzene	EPA 8260B	7125011	3.6	10	ND	10	· 09/25/07	09/25/07	
Chloroethane	EPA 8260B	7125011	4.0	20	ND	10	09/25/07	09/25/07	
Chloromethane	EPA 8260B	7125011	. 4.0	20	ND	10	09/25/07	09/25/07	
2-Chiorotoluene	EPA 8260B	7125011	2.8	10	ND	10	09/25/07	09/25/07	
4-Chlorotoluene	EPA 8260B	7125011	2.9	10	ND	10	09/25/07	09/25/07	
1,2-Dibromo-3-chloropropane	EPA 8260B	7125011	9.7	20.	ND	10	09/25/07	09/25/07	
Dibromochloromethane	EPA 8260B	7125011	2.8	10	ND	10	09/25/07	09/25/07	
1,2-Dibromoethane (EDB)	EPA 8260B	7125011	4.0	10	ND	10	09/25/07	09/25/07	
1,4-Dichlorobenzene	EPA 8260B	7125011	3.7	10	ND.	10	09/25/07	09/25/07	
1.2-Dichlorobenzene	EPA 8260B	7125011	3.2	10	ND	10	09/25/07	09/25/07	
1,3-Dichlorobenzene	EPA 8260B	7125011	3.5	10	ND	10	09/25/07	09/25/07	
Dichlorodifluoromethane	EPA 8260B	7125011	2.6	10	ND	10	09/25/07	09/25/07	
1,2-Dichloroethane	EPA 8260B	7125011	2.8	5.0	ND	10	09/25/07	09/25/07	
1,1-Dichloroethane	EPA 8260B	7125011	2.7	10	ND	10	09/25/07	09/25/07	
1,1-Dichloroethene	EPA 8260B	7125011	4.2	10	8.1	10	09/25/07	09/25/07	J
cis-1,2-Dichloroethene	EPA 8260B	7[25011	3.2	10	ND	10	09/25/07	09/25/07	
trans-1,2-Dichloroethene	EPA 8260B	7125011	2.7	10	ND	10	09/25/07	09/25/07	
1,2-Dichloropropane	EPA 8260B	7125011	3.5	10	ND	10	09/25/07	09/25/07	
2,2-Dichloropropane	EPA 8260B	7125011	3.4	10	ND	10	09/25/07	09/25/07	
cis-1,3-Dichloropropene	EPA 8260B	7125011	2.2	5.0	ND	10	09/25/07	09/25/07	
1,1-Dichloropropene	EPA 8260B	7125011	2.8	10	ND	10	09/25/07	09/25/07	
-									

TestAmerica - Irvine, CA

Nicholas Marz Project Manager

ori.shall not be reproduced,
merica.

1Q11657 <Page 4 of 42>

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive

Santa Ana, CA 92705 Attention: Clara Boeru Project ID: Boeing C-6 Torrance

C-6 Semi Annual and Quarterly GWM Event Sampled: 09/19/07

Report Number: IQI1657

Received: 09/19/07

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution	Date Extracted	Date	Data Qualifiers
Analyte	MECHOU	Datca	Limit	Cimit	Kesun	ractor	Extracted	Analyzed	Annuers
Sample ID: IQI1657-02RE1 (MWB019_V	WG091907_0001 -	Water) - cor	ıt.						
Reporting Units: ug/l						3			
trans-1,3-Dichloropropene	EPA 8260B	7125011	3.2	5.0	ND	10	09/25/07	09/25/07	
Ethylbenzene	EPA 8260B	7125011	2.5	10	ND	10	09/25/07	09/25/07	
Hexachlorobutadiene	EPA 8260B	7125011	3.8	10	ND	10	09/25/07	09/25/07	
2-Нехапове	EPA 8260B	7125011	26	60	ND U	J 10	09/25/07	09/25/07	C
Iodomethane	EPA 8260B	7125011	10	20	ND	10	09/25/07	09/25/07	
Isopropylbenzene	EPA 8260B	7125011	2.5	10	ND	10	09/25/07	09/25/07	
p-Isopropyltoluene	EPA 8260B	7125011	2.8	10	ND	10	09/25/07	09/25/07	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	7125011	3.2	10	ND	10	09/25/07	09/25/07	
Methylene chloride	EPA 8260B	7125011	9.5	10	ND	10	09/25/07	09/25/07	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	7125011	35	50	ND	10	09/25/07	09/25/07	
n-Propylbenzene	EPA 8260B	7125011	2.7	10	ND	10	09/25/07	09/25/07	
Styrene	EPA 8260B	7125011	1.6	10	ND	10	09/25/07	09/25/07	
1,1,1,2-Tetrachloroethane	EPA 8260B	7125011	2.7	10	ND	10	09/25/07	09/25/07	
1,1,2,2-Tetrachloroethane	EPA 8260B	7125011	2.4	10	ND	10	09/25/07	09/25/07	
Tetrachloroethene	EPA 8260B	7125011	3.2	10	170	10	09/25/07	09/25/07	
Tetrahydrofuran (THF)	EPA 8260B	7125011	35	100	ND	10	09/25/07	09/25/07	
Toluene	EPA 8260B	7125011	3.6	10	ND	10	09/25/07	09/25/07	
1,2,3-Trichlorobenzene	EPA 8260B	7125011	3.0	10	ND	10	09/25/07	09/25/07	
1,2,4-Trichlorobenzene	EPA 8260B	7125011	4.8	10	ND	10	09/25/07	09/25/07	
1,1,2-Trichloroethane	EPA 8260B	7125011	3.0	10	ND	10	09/25/07	09/25/07	
1,1,1-Trichloroethane	EPA 8260B	7125011	3.0	10	ND	10	09/25/07	09/25/07	
Trichloroethene	EPA 8260B	7125011	2.6	10	280	10	09/25/07	09/25/07	
Trichlorofluoromethane	EPA 8260B	7125011	3.4	20	ND	10	09/25/07	09/25/07	
1,2,3-Trichloropropane	EPA 8260B	7125011	4.0	10	ND	10	09/25/07	09/25/07	
1,2,4-Trimethylbenzene	EPA 8260B	7125011	2.3	10	ND	10	09/25/07	09/25/07	
1,3,5-Trimethylbenzene	EPA 8260B	7[25011	2.6	10	ND	10	09/25/07	09/25/07	
Vinyl acetate	EPA 8260B	7125011	10	60	· ND .	10	09/25/07	09/25/07	
Vinyl chloride	EPA 8260B	7125011	3.0	5.0	ND	10	09/25/07	09/25/07	
Xylenes, Total	EPA 8260B	7125011	9.0	10	ND	10	09/25/07	09/25/07	
Surrogate: 4-Bromofluorobenzene (80-120	%)				95 %				
Surrogate: Dibromofluoromethane (80-120	1%)				103 %				
Surrogate: Toluene-d8 (80-120%)					103 %				

except in full, without written permission from TestAmerica.

TestAmerica - Irvine, CA

Nicholas Marz Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced,

LDC #: 17624A1 VALIDATION COMPLETENESS WORKSHEET SDG #: IQI1657 Tier 2 Laboratory: Test America VALIDATION COMPLETENESS WORKSHEET Date: 10/24/6 Page: 1 of / Reviewer: N 2nd Reviewer: Q

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area			Comments
1.	Technical holding times	4	Sampling dates:	9/19/07
11.	GC/MS Instrument performance check	Ā		
	Initial calibration	SW		
IV.	Continuing calibration/ICV	SW		
V.	Blanks	4		
VI.	Surrogate spikes	7		
VII.	Matrix spike/Matrix spike duplicates	SW	MWC009_	none model , no gral
VIII.	Laboratory control samples	A	LCS	<i>y</i>
IX.	Regional Quality Assurance and Quality Control	N.		
X.	Internal standards	_ A		
XI.	Target compound identification	N	·	
XII.	Compound quantitation/CRQLs	N		
XIII.	Tentatively identified compounds (TICs)	N		
XIV.	System performance	N		
XV.	Overall assessment of data	1		
XVI.	Field duplicates	N		
XVII.	Field blanks	Ŋ		

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

1	MWB019_WG091907_0001 W	11	7[24021-BUC	21	31	
2		12	7525011-BLK	22	32	
3		13		23	33	
4		14		24	34	·
5		15		25	35	
6		16		26	36	
7		17		27	37	
8		18		28	38	
9		19		29	39	
10	<u>.</u>	20		30	40	

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA SW 846 Method 8260B)

A. Chloromethane*	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD Isopropyl alcohol
C. Vinyl choride**	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1.2.4-Trichlorobenzane	THE Acceptance of the second o
D. Chioroethane	X. Bromoform*	RR. Dibromomethane	Heyschlorobutsalism	
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM Naphthalone	
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1.2.3-Trichlorohenzene	GGGG: Activities
G. Carbon disulfide	AA, Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	000. 1,3.5-Trichlorobenzene	III leohitul alcohol
H. 1,1-Dichloroethene**	BB. 1,1,2,2-Tetrachloroethane*	VV. Isopropylbenzene	PPP, trans-1.2-Dichloroethene	Cinetic Character 1111
I. 1,1-Dichloroethane*	CC. Toluene**	WW. Bromobenzene	QQQ. cis-1.2-Dichloroethene	KKK Dronivatello
J. 1,2-Dichloroethene, total	DD. Chlorobenzene*	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LIII. Ethyl ether
K. Chloroform**	EE. Ethylbenzene**	YY. n-Propylbenzene	SSS. o-Xylene	MMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNN
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	dada
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	CCCC
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	200
Q. 1,2-Dichloropropane**	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY, tert-Butanol	SSSS,
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	TTT,
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-Isopropyltoluene	AAAA. Ethyl tert-butyl ether	UUUU.
T. Dibromochioromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	۷۸۸۷.

* = System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

LDC #: 176244 SDG #: 10/1657

VALIDATION FINDINGS WORKSHEET Initial Calibration

_ | |-Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". MN N/A

Did the laboratory perform a 5 point calibration prior to sample analysis? W'N N/A

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation?

Did the initial calibration meet the acceptance criteria?

N/A

YN N/A YN NA

Were all %RSDs and RRFs within the validation criteria of ≤30 %RSD and ≥0.05 RRF?

	7		=	_	_	_	_	_	==	_	_	_	_	 	_	 	 	 	 	 _		
Qualifications	TAI+ 1/4	するう																				
Associated Samples	1 # 2Coll 21 L	114110114																				
Finding RRF (Limit: >0.05)	0.045																					
Finding %RSD (Limit: <30.0%)																						
Compound	⋾																					
Standard ID	しなし																·					
# Date	4/18/04																					

VALIDATION FINDINGS WORKSHEET Continuing Calibration

_ _ _

Page: Reviewer: 2nd Reviewer:

(2) (677 176244 LDC #: SDG #: METHOD: GC/MS VOA (EPA SW 846 Method 8260)

YN N/A Y N/A

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N N/A

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ? Were all %D and RRFs within the validation criteria of ≤25 %D and ≥0.05 RRF?

			_			 		 		 _									
	Audillications	J/15/A			>											4		·	
Associated Samples		X-10527																	
Finding RRF (Limit: >0.05)																			
Finding %D (Limit: <25.0%)	71.15		2.2	50.9															
Compound	#		X	7															
Standard ID	52°45/																		
Date	10/22/6																		
*			\perp										_				\exists	\exists	

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Tait Environmental Management, Inc.

October 30, 2007

701 N. Park Center Drive Santa Ana, CA 92705 ATTN: Ms. Clara Boeru

SUBJECT: Boeing Realty Corp. Bldg C-6 Facility, Data Validation

Dear Ms. Boeru,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on October 19, 2007. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 17643:

SDG # Fraction

IQI1591 Volatiles, Methane, Ethane, & Ethene

The data validation was performed under Tier 3 guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998

Please feel free to contact us if you have any questions.

Sincerely,

Stella S. Cuenco

Project Manager/Senior Chemist

Boeing Realty Corp., Bldg C-6 Facility Data Validation Reports LDC# 17643

Volatiles

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp., Bldg. C-6 Facility

Collection Date:

September 18, 2007

LDC Report Date:

October 29, 2007

Matrix:

Water

Parameters:

Volatiles

Validation Level:

Tier 3

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): IQI1591

Sample Identification

IRZCMW002_WG091807_0001

Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

In the case where %RSD was greater than 15.0%, the laboratory used a calibration curve to evaluate the compound. All coefficients of determination (r^2) were greater than or equal to 0.990.

For the purposes of technical evaluation, all compounds were evaluated against the 30.0% (%RSD) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

Average relative response factors (RRF) for all volatile target compounds and system performance check compounds (SPCCs) were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
9/18/07	2-Butanone	0.045 (≥0.05)	All samples in SDG IQI1591	J (all detects) UJ (all non-detects)	А

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 25.0% (%D) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

All of the continuing calibration RRF values were within method and validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were not within QC limits. Since there were no associated samples, no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp., Bldg. C-6 Facility Volatiles - Data Qualification Summary - SDG IQI1591

SDG	Sample	Compound	Flag	A or P	Reason
IQI1591	IRZCMW002_WG091807_0001	2-Butanone	J (all detects) UJ (all non-detects)	Α	Initial calibration (RRF)

Boeing Realty Corp., Bldg. C-6 Facility Volatiles - Laboratory Blank Data Qualification Summary - SDG IQI1591

No Sample Data Qualified in this SDG

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive Santa Ana, CA 92705 Attention: Clara Boeru Project ID: Boeing C-6 Torrance

C6 Semi-Annual and Quarterly GWM Event

Report Number: IQI1591

Sampled: 09/18/07

Received: 09/18/07

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1Q11591-02 (IRZCMW002_V	WG091807 0001 -	Water)							
Reporting Units: ug/l		,							
Vinyl chloride	EPA 8260B	7124002	3.0	5.0	660	10	09/24/07	09/24/07	
Surrogate: 4-Bromofluorobenzene (80-120	n%)				108 %				
Surrogate: Dibromofluoromethane (80-12	0%)				103 %				
Surrogate: Toluene-d8 (80-120%)					105 %				
Sample ID: IQI1591-02RE1 (IRZCMW0	02_WG091807_0	001 - Water)							
Reporting Units: ug/l		·							
Acetone	EPA 8260B	7123004	9.0	20	ND	2	09/23/07	09/23/07	
Benzene	EPA 8260B	7123004	0.56	2.0	ND	2	09/23/07	09/23/07	
Bromobenzene	EPA 8260B	7123004	0.54	2.0	ND	2	09/23/07	09/23/07	
Bromochloromethane	EPA 8260B	7123004	0.64	2.0	ND	2	09/23/07	09/23/07	
Bromodichloromethane	EPA 8260B	7123004	0.60	2.0	ND	2	09/23/07	09/23/07	
Bromoform	EPA 8260B	7123004	0.80	2.0	ND	2	09/23/07	09/23/07	
Bromomethane	EPA 8260B	7123004	0.84	2.0	ND .	2	09/23/07	09/23/07	
2-Butanone (MEK)	EPA 8260B	7123004	9.4	. 10	ND UJ	2	09/23/07	09/23/07	
n-Butylbenzene	EPA 8260B	7123004	0.74	2.0	ND	2	09/23/07	09/23/07	
sec-Butylbenzene	EPA 8260B	7123004	0.50	2.0	ND	2	09/23/07	09/23/07	
tert-Butylbenzene	EPA 8260B	7123004	0.44	2.0	ND	2	09/23/07	09/23/07	
Carbon Disulfide	EPA 8260B	7123004	0.96	2.0	ND	2	09/23/07	09/23/07	
Carbon tetrachloride	EPA 8260B	7123004	0.56	1.0	ND	2	09/23/07	09/23/07	
Chlorobenzene	EPA 8260B	7123004	0.72	2.0	0.88	2	09/23/07	09/23/07	J
Chloroethane	EPA 8260B	7123004	0.80	4.0	ND	2	09/23/07	09/23/07	
Chloroform	EPA 8260B	7123004	0.66	2.0	ND	2	09/23/07	09/23/07	
Chloromethane	EPA 8260B	7123004	0.80	4.0	'ND	2	09/23/07	09/23/07	
2-Chlorotoluene	EPA 8260B	7123004	0.56	2.0	ND	2	09/23/07	09/23/07	
4-Chlorotoluene	EPA 8260B	7123004	0.58	2.0	ND	2	09/23/07	09/23/07	•
1,2-Dibromo-3-chloropropane .	EPA 8260B	7123 004	1.9	4.0	ND	2	09/23/07	09/23/07 -	
Dibromochloromethane	EPA 8260B	7123004	0.56	2.0	ND	2	09/23/07	09/23/07	
1,2-Dibromoethane (EDB)	EPA 8260B	7123004	0.80	2.0	ND	2	09/23/07	09/23/07	
1,4-Dichlorobenzene	EPA 8260B	7123 004	0.74	2.0	ND	2	09/23/07	09/23/07	
1,2-Dichlorobenzene	EPA 8260B	7123004	0.64	2.0	ND	2	09/23/07	09/23/07	
1,3-Dichlorobenzene	EPA 8260B	7123004	0.70	. 2.0	ND	2	09/23/07	09/23/07	
Dichlorodifluoromethane	EPA 8260B	7123004	0.52	2.0	ND	2	09/23/07	09/23/07	
1,2-Dichloroethane	EPA 8260B	7123004	0.56	I.0	ND ·	2	09/23/07	09/23/07	
1,1-Dichloroethane	EPA 8260B	7123004	0.54	2.0	ND	2	09/23/07	09/23/07	
1,1-Dichloroethene	EPA 8260B	7123004	0.84	2.0	ND	2	09/23/07	09/23/07	
cis-1,2-Dichloroethene	EPA 8260B	7123004	0.64	2.0	19	2	09/23/07	09/23/07	
trans-1,2-Dichloroethene	EPA 8260B	7123004	0.54	2.0	4.9	2	09/23/07	09/23/07	
1,2-Dichloropropane	EPA 8260B	7123004	0.70	2.0	ND	2	09/23/07	09/23/07	
2,2-Dichloropropane	EPA 8260B	7123004	0.68	2.0	ND	2	09/23/07	09/23/07	
cis-1,3-Dichloropropene	EPA 8260B	7123004	0.44	1.0	ND	2	09/23/07	09/23/07	

TestAmerica - Irvine, CA

Nicholas Marz Project Manager

1102907

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Testamerica.

IQI1591 <Page 4 of 65>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

TAIT Environmental/Boeing

Project ID: Boeing C-6 Torrance

701 N. Parkcenter Drive

C6 Semi-Annual and Quarterly GWM Event

Sampled: 09/18/07

Santa Ana, CA 92705 Attention: Clara Boeru Report Number: IQI1591

Received: 09/18/07

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
•					1100011				C
Sample ID: IQI1591-02RE1 (IRZCMW0	02_WG091807_00	01 - Water)	- cont.						
Reporting Units: ng/l	ED 4 82/0D	2122004	0.56	2.0	ND	2	09/23/07	00/22/07	
1,1-Dichloropropene	EPA 8260B	7123004				2		09/23/07	
trans-1,3-Dichloropropene	EPA 8260B	7123004	0.64	1.0	ND	2	09/23/07	09/23/07	•
Ethylbenzene	EPA 8260B	7123004	0.50	2.0	ND	2	09/23/07	09/23/07	
Hexachlorobutadiene	EPA 8260B	7123004	0.76	.2.0	ND	2	09/23/07	09/23/07	
2-Hexanone	EPA 8260B	7123004	5.2	12	ND	2	09/23/07	09/23/07	
lodomethane	EPA 8260B	7123004	2.0	4.0	ND	2	09/23/07	09/23/07	
Isopropylbenzene	EPA 8260B	7123004	0.50	2.0	ND	2	09/23/07	09/23/07	
p-Isopropyltoluene	EPA 8260B	7123004	0.56	2.0	ND	2	09/23/07	09/23/07	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	7123004	0.64	2.0	ND	2	09/23/07	09/23/07	
Methylene chloride	EPA 8260B	7123004	1.9	2.0	ND	2	09/23/07	09/23/07	•
4-Methyl-2-pentanone (MIBK)	EPA 8260B	7123004	7.0	10	ND	2	09/23 <i>/</i> 07	09/23/07	
n-Propylbenzene	EPA 8260B	7123004	0.54	2.0	ND	2	09/23 <i>/</i> 07	09/23/07	
Styrene	EPA 8260B	7123004	0.32	2.0	ND	2	09/23/07	09/23/07	
1,1,1,2-Tetrachloroethane	EPA 8260B	7123004	0.54	2.0	ND	2	09/23 <i>/</i> 07	09/23/07	
1,1,2,2-Tetrachloroethane	EPA 8260B	7123004	0.48	2.0	ND	2	09/23/07	09/23/07	
Tetrachloroethene	EPA 8260B	7123004	0.64	2.0	ND	2	09/23/07	09/23/07	
Tetrahydrofuran (THF)	EPA 8260B	7123004	7.0	20	ND	2	09/23/07	09/23/07	
Toluene	EPA 8260B	7123004	0.72	2.0	ND	2	09/23/07	09/23/07	
1,2,3-Trichlorobenzene	EPA 8260B	7123004	0.60	2.0	ND	2	09/23/07	09/23/07	
1,2,4-Trichlorobenzene	EPA 8260B	7123004	0.96	2.0	ND	2	09/23/07	09/23/07	
1,1,2-Trichloroethane	EPA 8260B	7123004	0.60	2.0	ND	2	09/23/07	09/23/07	
1,1,1-Trichloro ethane	EPA 8260B	7123004	0.60	2.0	ND	2	09/23/07	09/23/07	
Trichloroethene	EPA 8260B	7123004	0.52	2.0	3.2	2	09/23/07	09/23/07	
Trichlorofluoromethane	EPA 8260B	7123004	0.68	4.0	ND	2	09/23/07	09/23/07	
1,2,3-Trichloropropane	EPA 8260B	7123004	0.80	2.0	ND	2	09/23/07	09/23/07	
1,2,4-Trimethylbenzene	EPA 8260B	7123004	0.46	2.0	ND	2	09/23/07	09/23/07	
1,3,5-Trimethylbenzene	EPA 8260B	7123004	0.52	2.0	ND	. 2	09/23/07	09/23/07	
Vinyl acetate	EPA 8260B	7123004	2.0	12	ND	2	09/23/07	09/23/07	
Xylenes, Total	EPA 8260B	7123004	1.8	2.0	ND	2	09/23/07	09/23/07	
Surrogate: 4-Bromofluorobenzene (80-1209	%)	•			98 %				
Surrogate: Dibromofluoromethane (80-120)	*				105 %				
Surrogate: Toluene-d8 (80-120%)	,				105 %				
. , ,									

TestAmerica - Irvine, CA

Nicholas Marz Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced,

except in full, without written permission from TestAmerica.

1 102907

IQI1591 <Page 5 of 65>

LDC #: 17643A1 VALIDATION COMPLETENESS WORKSHEET SDG #: IQI1591 Tier 3 Laboratory: Test America Revie

Date:	0/26/0
Page:_	1 of 1
Reviewer:	4
2nd Reviewer:	0

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A .	Sampling dates: 9/18/01
11.	GC/MS Instrument performance check	4	,
III.	Initial calibration	5₩	%RSD, 12
IV.	Continuing calibration/fS¥	4	
V.	Blanks	1	
VI.	Surrogate spikes	4	
VII.	Matrix spike/Matrix spike duplicates	SW	note associd, no gral
VIII.	Laboratory control samples	4 54	103
IX.	Regional Quality Assurance and Quality Control	N	
Χ.	Internal standards	4	
XI.	Target compound identification	4	
XII.	Compound quantitation/CRQLs		
XIII.	Tentatively identified compounds (TICs)	N	not reported
XIV.	System performance	4	
XV.	Overall assessment of data	4	
XVI.	Field duplicates	N	
XVII.	Field blanks	N	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

1	IRZCMW002_WG091807_0001 W	11	7524002-BLK	21	31	
2		12	1524002-BLK 152300-BLK	22	32	
3		13		23	33	
4		14		24	34	
5		15		25	35	
6		16		26	36	
7		17		27	37	
8		18		28	38	
9		19		29	39	
10		20		30	40	

VALIDATION FINDINGS CHECKLIST

Page: Lof Page: Lof Page: Mage: Mage

Method: Volatiles (EPA SW 846 Method 8260B)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	/			
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check	ī	Ι	·	
Were the BFB performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?				
III. Initial calibration	ı	Γ	ι	
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			· · · · · · · · · · · · · · · · · · ·
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	/			
Was a curve fit used for evaluation?	/			
Did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?	/			
Were all percent relative standard deviations (%RSD) \leq 30% and relative response factors (RRF) \geq 0.05?				
IV. Continuing calibration	ı			
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/			
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Were all percent differences (%D) \leq 25% and relative response factors (RRF) \geq 0.05?	/			
V. Blanks	l	L		
Was a method blank associated with every sample in this SDG?	/			
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
VI. Surrogate spikes				
Were all surrogate %R within QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?		/		
VIII. Laboratory control samples				
Was an LCS analyzed for this SDG?				

VALIDATION FINDINGS CHECKLIST

Page:of	
Reviewer: k	
2nd Reviewer:	

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
IX. Regional Quality Assurance and Quality Control	,	r	r	
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?				
X. Internal standards	T		r -	
Were internal standard area counts within -50% or +100% of the associated calibration standard?				
Were retention times within ± 30 seconds of the associated calibration standard?				
XI. Target compound identification	1			
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XII. Compound quantitation/CRQLs	1			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Tentatively identified compounds (TICs)				
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?			/	
Were relative intensities of the major ions within \pm 20% between the sample and the reference spectra?			/	
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?			/	
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data	<u> </u>			
Overall assessment of data was found to be acceptable.				
XVI. Field duplicates				
Field duplicate pairs were identified in this SDG.		/	-	and the state of t
Target compounds were detected in the field duplicates.			/	
XVII. Field blanks				
Field blanks were identified in this SDG.		/		
Target compounds were detected in the field blanks.			/	

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA SW 846 Method 8260B)

A. Chloromethane*	U. 1,1,2-Trichloroethane	OO, 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP, Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride**	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform*	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z, 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO, 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethene**	BB. 1,1,2,2-Tetrachloroethane*	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane*	CC. Toluene**	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene*	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLLL. Ethyl ether
K. Chloroform**	EE. Ethylbenzene**	YY. n-Propylbenzene	SSS. o-Xylene	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF, Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN,
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	.dddd
O. Carbon tetrachloride	II. 2-Chioroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	aaaa.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane**	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	SSSS.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	TTTT.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG, p-Isopropyltoluene	AAAA. Ethyl tert-butyl ether	uuuu.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	vvvv.

* = System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

LDC #: 1764341 SDG #: 1811591

VALIDATION FINDINGS WORKSHEET Initial Calibration

o To Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N N/A

Did the laboratory perform a 5 point calibration prior to sample analysis?

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation?

Did the initial calibration meet the acceptance criteria? N/A Y (V) N/A

P'N N/A

Were all %RSDs and RRFs within the validation criteria of ≤30 %RSD and ≥0.05 RRF?

Qualifications	T/LM+													
Associated Samples	1723004-BLK													
Finding RRF (Limit: >0.05)	2,0,0	2,045												
Finding %RSD (Limit: <30.0%)														
Compound	5													
Standard ID	1041													
# Date	40/1/6	La/81/6												

SDG #: 12/159 LDC #: 176454

Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

Page: of / Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following

A_x = Area of compound,
C_x = Concentration of compound,
S = Standard deviation of the RRFs
X = Mean of the RRFs

 $A_{\rm b}$ = Area of associated internal standard $C_{\rm b}$ = Concentration of internal standard

 $RRF = \langle A_{\nu} \rangle (C_{s})/(A_{b}, \langle C_{\nu})$ average RRF = sum of the RRFs/number of standards %RSD = 100 $^{\circ}$ (S/X)

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compount	Compound (Reference Internal Standard)	RRF (0 std)	RRF (/O std)	Average RRF (initial)	Average RRF	%RSD	Can'
-	101	915/07	G	(1st internal standard)	5.374	J16.0	0.363	0.363	85.9	85.7
			>	(2nd internal standard)	1.293	1.293	٥ ٢.	1,210	11.98	11.98
			华	(3rd internal standard)	1.778	1.778	1.58	1,581	13.6	13.84
7			B	(Jet internal standard)	6.619	0,619	pas'o	pres'o	13.81	13.81
	_			(2nd internal standard)						
				(3rd internal standard)						
3	101	La/11/6	U	(1st internal standard)	0.350	a52'o	0.371	175.0	5.35	5.38
				(2nd internal standard)						
				(3rd internal standard)						
4				(1st internal standard)					•	
				(2nd internal standard)				-		
				(3rd internal etandord)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated

INICLC-SB.wpd

SDG #: 18/1591 LDC #: 176432

Continuing Calibration Results Verification VALIDATION FINDINGS WORKSHEET

l of 2nd Reviewer: Page: Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_{\lambda})(C_{s})/(A_{s})(C_{\lambda})$

Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF $A_x = Area$ of compound, $A_y = Area$ of $C_x = Concentration$ of compound, $C_b = Concent$

 $A_{\rm ls}$ = Area of associated internal standard $C_{\rm ls}$ = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compour	Compound (Reference internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	Q %	Q%
-	Stolky	Lo1 tx/6	ਹ	(1st internal standard)	0.371	0,397	2997	1.7	7.0
				(2nd internal standard)					
				(3rd internal standard)					
2	19702	40/25/6	V	(1st internal standard)	2.36.2	abto	0,390	7.4	57
			^	(2nd internal standard)	1.26	2)2.1	1215.	o F	1.0
			出	七モ (3rd internal standard)	1.581	1. 684	1,684	5.9	6,5
က			PP	المرابعة (Het internal standard)	tics'e	0.573	6,573	9.4	9.3
				(2nd internal standard)					
				(3rd internal standard)					
4				(1st internal standard)					
				(2nd internal standard)					
				(3rd internal standard)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the ecalculated results. LDC #: 17643A1 SDG #: 1211591

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:	<u>1</u> of /
Reviewer:	ac,
2nd reviewer:_	

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8	25	26.13	105	105	0
Bromofluorobenzene		24.38	98	98	<u> </u>
1,2-Dichloroethane-d4					
Dibromofluoromethane	_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	26.31	0.5	105	0

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					
Dibromofluoromethane					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					
Dibromofluoromethane					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					
Dibromofluoromethane					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					
Dibromofluoromethane					

LDC #: 1764341 SDG #: (21/59)

Laboratory Control Sample Results Verification VALIDATION FINDINGS WORKSHEET

Page: 1 of Reviewer:_ 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

LCS = Laboraotry control sample percent recovery RPD = I LCS - LCSD | * 2/(LCS + LCSD)

7I23004-BS1

LCS ID:

LCSD = Laboratory control sample duplicate percent recovery

culated

	1S	oike	Spiked S	ample	31	SOI	uso I	Ωχ	/SD	cs/i csp
Compound	Ac (W.S.	Added (wes (L)	Concentration	ration (U)	Percent Recovery	Recovery	Percent Recovery	Recovery	RPD	٥
	SOI	LCSD	O SOI	I CSD	Reported	Recalc	Renorted	Recalc	Renorted	Recalc
1,1-Dichloroethene	25		35.55		25	06				
Trichloroethene			24.74		65	99				
Benzene			23.70		26	23				
Toluene			24.87		99	66				
Chlorobenzene	->		57,77		46	97				
						-				
									والمادر المادات والمادات والم	

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#: 1764多X1 SDG #: 1811591

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	
Reviewer:	an/
2nd reviewer:	V

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Y)N N/A Were all reported results recalculated and verified for all level IV samples? Y/N N/A

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = (A_x)(I_s)(DF) Example: (As)(RRF)(Vo)(%S) Area of the characteristic ion (EICP) for the compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Conc. = (667553) (25) (60) Amount of internal standard added in nanograms (ng) RRF Relative response factor of the calibration standard. = 660 mg/L Volume or weight of sample pruged in milliliters (ml) or grams (g). Df Dilution factor. %S Percent solids, applicable to soils and solid matrices

#	Sample ID	Compound .	Reported Concentration ()	Calculated Concentration ()	Qualification

				- Manual Val	

					· · · · · · · · · · · · · · · · · · ·

Boeing Realty Corp., Bldg C-6 Facility Data Validation Reports LDC# 17643

Methane-Ethane-Ethene

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp., Bldg. C-6 Facility

Collection Date:

September 18, 2007

LDC Report Date:

October 29, 2007

Matrix:

Water

Parameters:

Dissolved Gases

Validation Level:

Tier 3

Laboratory:

TestAmerica, Inc./Air Technology Laboratories, Inc.

Sample Delivery Group (SDG): IQI1591/A7092005

Sample Identification

IRZCMW002 WG091807 0001

Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per Method RSK-175 for Dissolved Gases.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

Initial calibration of compounds was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

b. Calibration Verification

Calibration verification was performed at required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 25.0% QC limits.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No dissolved gas contaminants were found in the method blanks.

IV. Accuracy and Precision Data

a. Surrogate Recovery

Surrogates were not required by the method.

b. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

c. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Target Compound Identification

All target compound identifications were within validation criteria.

VI. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria.

VII. System Performance

The system performance was acceptable.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp., Bldg. C-6 Facility Dissolved Gases - Data Qualification Summary - SDG IQI1591/A7092005

No Sample Data Qualified in this SDG

Boeing Realty Corp., Bldg. C-6 Facility Dissolved Gases - Laboratory Blank Data Qualification Summary - SDG IQI1591/A7092005

No Sample Data Qualified in this SDG

Client: TestAmerica Attn: Nicholas Marz

Client's Project: Date Received: IQ11591 9/20/2007

Matrix: Water

Units:

ng/L

1RZCMW002_WG0918-7_0001

L		D	issolved Ga	ses by I	EPA Proce	dure R	SKSOP-17	5			
L	ab No.:	A7092005-01,		A709	2005-02	A709	2005-03	A709	2005-04	A709	2005 -05
Client Samp	le I.D.:	IQI1591-01		IQI	1591-02	IQI	1591-03	IQI	1591-04	IQI	1591-05
Date Sa	mpled:	9/1	8/2007	9/1	8/2007	9/1	8/2007	9/1	8/2007	9/1	8/2007
Date An	alyzed:	9/22/2907		9/22/2007		9/2	2/2007	9/2:	2/2007	9/2	2/2007
Analyst Initials:		D/T		DT		DT		DT		DT	
Data File:		22sep006		22sep007		22sep008		22sep009		22sep010	
QC Batch:		070922GC8A1		070922GC8A1		070922GC8A1		076922GC8A1		070922GC8A1	
Dilution Factor:		1.0		1.0		1.0		1.0		1.0	
ANALYTE	POL	RAL	Results	RL	Results	RL Results		RL	Results	RL	Results
Methane	1.0	/1.0	4.0	1.0	13,000	1.0	A50	1.0	2.5	1.0	· 140
Ethane	2.0	2.0	ND	2.0	ND	2.0	ND	2.0	ND	2.0	ND
Petrologo	7.0	2.0	-20	3.0	7.6	3.6	6.1	-3-0-	7.5	3.0	76

PQL = Practical Quantitation Limit

ND = Not Detected (Below RL)

RL = PQL X Dilution Factor

Reviewed/Approved By:

Mark J. Johnson Operations Manager Date: 9-28-0)

The cover letter is an integral part of this analytical report.

1/02901

AirTECHNOLOGY Laboratories, Inc. -

18501 E. Gale Avenue, Suite 130 ♦ City of Industry, CA 91748 ♦ Ph. (626) 964-4032 ♦ Fx. (626) 964-5832

P. 4

SDG#	i: 17643A51 t: IQI1591/A7092005 atory: Del Mar Analytica l/Ai	_ r Tec	h <u>nology</u> L	aboratory	Tier 3	ESS V	VORKSHI	EET	Date: 10/54/ Page: 10f / Reviewer: 10 2nd Reviewer: 11
The sa	amples listed below were retion findings worksheets.				ollowing va	alidatio	n areas. Val	lidation find	lings are noted in attache
	Validation A	rea					c	omments	
1.	Technical holding times			4	Sampling d	ates:	9/18/07		
IIa.	Initial calibration			4	12				
IIb.	Calibration verification			A	%D=	25			
III.	Blanks			4					-
IVa.	Surrogate recovery			N	hof re	かん			
IVb.	Matrix spike/Matrix spike duplic	cates		N	chient	20 Sov	atrid		
IVc.	Laboratory control samples			A	WS/				
V	Target compound identification	1		Δ					
VI.	Compound Quantitation and C	RQLs		4_					
VII.	System Performance			1					
VIII.	Overall assessment of data			4	10777303100				
IX.	Field duplicates			И		(SECTION SECTION SECTI	TO THE STATE OF TH	:	
X.	Field blanks	****		N					
Note: Validate	A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples:		R = Rins	o compound sate eld blank	s detected	11	D = Duplicate TB = Trip blank EB = Equipme		
1	IRZCMW002_WG091807_0001	11			21	T		31	
2	11\2\cdr\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	12			22	†		32	
3		13			23	·		33	<u>-</u>
4		14			24			34	
5		15			25			35	
6		16			26			36	
7		17			27			37	
		18			28			38	
8 9		19			29		· · · · · · · · · · · · · · · · · · ·	39	
10		20			30			40	
Notos									

VALIDATION FINDINGS CHECKLIST

Page: 1 of2_ Reviewer: ______ 2nd Reviewer: _______

Method: GC HPLC				
Validation Area	Yes	No	NA	Findings/Comments
1. Technical holding times	7			And the second s
All technical holding times were met.				
Cooler temperature criteria was met.		Notice the Marie		
It Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Was a linear fit used for evaluation? If yes, were all percent relative standard deviations (%RSD) ≤ 20%?		/		
Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?	/			
Did the initial calibration meet the curve fit acceptance criteria?	/			
Were the RT windows properly established?	/	a-al legator ellera		
IV. Continuing calibration				
What type of continuing calibration calculation was performed?%D or%R	/			
Was a continuing calibration analyzed daily?	/			
Were all percent differences (%D) < 18%.0 or percent recoveries 85-116%?	/			%
Were all the retention times within the acceptance windows?		The Market Was San	essessawe-se se	
V. Blanks				1874 - 1874 - 1874 - 1874 - 1874 - 1874 - 1874 - 1874 - 1874 - 1874 - 1874 - 1874 - 1874 - 1874 - 1874 - 1874
Was a method blank associated with every sample in this SDG?	/			
Was a method blank analyzed for each matrix and concentration?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
VI. Surrogate spikes	•			
Were all surrogate %R within the QC limits?		/		
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?			/	
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?				
VII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		/		
Was a MS/MSD analyzed every 20 samples of each matrix?		/		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VIII. Laboratory control samples				
Was an LCS analyzed for this SDG?	/			
Was an LCS analyzed per extraction batch?	/			

LDC #: 17643151 SDG #: 1211591

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2 Reviewer: 1 2nd Reviewer: _____

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
IX. Regional Quality Assurance and Quality Control 🕏				
Were performance evaluation (PE) samples performed?			_	
Were the performance evaluation (PE) samples within the acceptance limits?				
X Target compound identification	ı			
Were the retention times of reported detects within the RT windows?		*****		
XI: Compound quantitation/CROLs				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XII. System performance		-		
System performance was found to be acceptable.				
XIII. Overall assessment of data			ı	The second secon
Overall assessment of data was found to be acceptable.				
XIV. Field duplicates				
Were field duplicate pairs identified in this SDG?		/		
Were target compounds idetected in the field duplicates?			/	
XV. Field blanks				Control of the Contro
Were field blanks identified in this SDG?		/		
Were target compounds detected in the field blanks?				

Initial Calibration Calculation Verification

Method: RSK-175

LDC#: 17643151 SDG#: 18/157

		(x)	(\
	Compound	Concentration	Response
CD front	Methane	1000	2109
		2000	11501
		10000	25221
		100000	261792
		200000	1299049

Regression Output	Calculated	Reported
Constant	0.00000	
Std Err of Y Est		
R Squared	0.999995	0.999995
Degrees of Freedom		
X Coefficient(s)	2.599	2.598800
Std Err of Coef.		
Correlation Coefficient	0.999997	
Coefficient of Determination (r^2)	0.999995	

Page: 1 of / Reviewer: 4

linear fit .xls

LDC #: 17643451 SDG #: 102/15/1

Continuing Calibration Results Verification VALIDATION FINDINGS WORKSHEET

Page: Reviewer:_ 2nd Reviewer:_

> HPLC METHOD: GC

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF - CF)/ave. CF .CF = A/C

Where: ave. CF = Initial calibration average CF
CF = continuing calibration CF
A = Area of compound
C = Concentration of compound

Reported	Reported	Reported	Reported	Reported		Recalculated	Reported	Recalculated
Average CF(Ical)/ Compound CCV Conc.	Average CF(Ical)/ Compound CCV Conc.	Average CF(Ical)/ CCV Conc.		Ę,	CF/Conc. CCV	CF/Conc. CCV	Q %	Ω%
	metan	000000		St.	215	\$60.512	13.9	139
886	86	86	8b	188	98815,047	18812,914	۲۰۱	7.

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

CONCLC.18

LDC #: 1784345

SDG #: (Q1157

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

2nd Reviewer Page: 1 of/ Reviewer: K

METHOD: / GC HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * (SSC - SC)/SA

SSC = Spiked sample concentration SA = Spike added LCS = Laboratory Control Sample

Where

SC = Sample concentration

RPD =(((SSCLCS - SSCLCSD) * 2) / (SSCLCS + SSCLCSD))*100

LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples:_

Y531 6/22/07

	is	Spike	Sample	Spike Sample	ample	SOT	S	TCSD	٥	TCS/ICSD	CSD
Compound	Addec √~~r _{bd} v—√	ided	Corric.	Concentral (@@\V	ration V)	Percent Recovery	ecovery	Percent Recovery	covery	RPD	٥
	rcs	LCSD	. 1	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline (8015)											
Diesel (8015)											
Berizene (8021B)											
Methane (RSK-175)	7007	7000		48.1862 ED.1173	6331.84u	46	96	16	90	8.6	8:5
2,4-D (8151)											
Dinoseb (8151)								·			
Naphthalene (8310)											
Anthracene (8310)											
HMX (8330)											
2,4,6-Trinitrotoluene (8330)											

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LCSCLCNew.wpd

LDC #: 1764345 SDG #: 1211591

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: 1 of [Reviewer: 2nd Reviewer:

> GC HPLC METHOD:

X N N/A

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10% of the reported results?

(RF)(Vs or Ws)(%S/100) (A)(Fv)(Df) Concentration=

A= Area or height of the compound to be measured
 Fv= Final Volume of extract
 Df= Dilution Factor

RF= Average response factor of the compound

In the initial calibration
Vs= Initial volume of the sample
Ws= Initial weight of the sample
%S= Percent Solid

Concentration =_

Compound Name

Sample ID.

Example:

			T	1	===	T	T	T	٦		T
Qualifications								10 278-01	10.218736		
Recalculated Results Concentrations	(5 3,069251		= (1,25/095)			13000 may
Reported Concentrations						(16) (1000) /41300 = 3,069251		J. 55/ (26) (36) (20) (0001) (٨
Compound		1 1 2 3 3 3	188 = 142747.81			(0.14274781)(55.51)		(4) (31) (1874-121)	-	(2 5/05=1	(cool) (25/8/2/ + 10,378/756) (1000)
Sample ID	N = 2,5980 ×	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	12/2/288 = 142/4/81		- V - W	12/4 22/2 1/61	1	has in tight of	>	+	
#	<u> </u>							1			

SAMPCALew.wpd

Comments: